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Summa~ 

A plane shock wave is assumed to be incident upon a solid surface that is perforated by a number of closely 
spaced holes of length L and radius a, where a /L  << 1, and the problem is to determine the character of the 
reflected wave field. The latter is essentially determined when the rate of inflow from the ambient atmosphere to 
the perforated plug is known, and the majority of the effort in this paper is devoted to the evaluation of this 
quantity. The assumption that the incident wave is weak is made throughout. Results show how the reflected 
wave field depends upon L and a and upon the acoustic-impedance ratio of the ambient air and the air within 
the slender tubes; the latter may be influenced by the distensibility of the tubes, although this matter is not 
pursued here. It is theoretically possible for reflected-shock s~rengths to exceed the solid-wall value for short 
intervals of time. Qualitative comparisons of the present theory with some existing observations of rather 
strong-shock reflection from perforated plugs lend support to the predictions, especially in the situation for 
which viscous effects are slight. 

1. Introduction 

Consider  the s i tuat ion sketched in  Fig. 1, which depicts a large tube whose end is closed 
by a plug. The plug is perforated to a cons tant  depth by  a large array of closely-packed 
slender holes. A shock-wave is inc ident  on the perforated plug from the air-filled region 
above it, and  a n u m b e r  of quest ions now arise. For  example, what  is the s trength of the 
reflected wave and  how does it vary with time? Is there a secondary reflected shock or 
shocks arising from the presence of a second reflecting surface at the base of the slender 
holes? How are these factors inf luenced by the radius and  length of the holes? 

Apar t  from the intr insic interest  of the problem there are some potent ia l  practical 
appl icat ions of the conf igurat ion that should be ment ioned.  For  example the perforated 
plug can be thought  of as a structural ly robust  absorber  of blast  waves. The analysis to be 
described below will be restricted to weak incident  waves; these are inc luded in  a large 
class of real blast  phenomena ,  arising from the discharge of weapons,  the rupture  of 
pressure vessels and  similar sources whose reflections are undesirable;  one may need to 
use a wave-cancellat ion device that has some structural  rigidity in order to cope with these 
problems. 

The conf igura t ion and  its behaviour  has some connect ion  with the behaviour  of 
randomly-porous  materials,  a l though this impor tan t  topic is taken up in detail elsewhere 
(Clarke [2]). It is sometimes useful to be able to create a control led d is turbance  in the 
nomina l ly  s tagnant  gas behind  a shock that is reflected from the closed end of a shock 
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tube, and the perforated-plug (or bundle of hypodermic needles) is one way in which this 
can be accomplished quite simply. A practical example of this technique is to be found in 
Scott's [6] studies of fully-dispersed shock waves in shock-heated carbon dioxide. 

The first part of the present paper in Sec. 2 deals with the disturbance flow in a single 
tube of small diameter-to-length ratio. It is assumed that the motion of the air in such a 
tube can be modelled as a one-dimensional unsteady polytropic compressible flow of 
small amplitude, with viscous resistance to this motion described by an average friction- 
factor expression that is linearly proportional to local gas velocity. Laplace transform 
methods are used to find a disturbance-pressure/inflow-velocity relation at the upper, 
interface, end of a tube (see Fig. 1). Nonlinear weak-wave propagation in the free 
atmosphere above the perforated plug (Fig. 1) is analysed briefly in Sec. 3 and the 
problem is formally solved by making the resulting disturbance-pressure/inflow-velocity 
relationship compatible with conditions at the end of the aggregation of slender tubes. In 
particular it is required that both pressure and mass-flux shall be continuous at the 
interface, and this latter condition introduces the geometric "openness ratio" factor a, 
defined as the fraction of the upper surface area of the plug that is penetrated by the 
collection of holes. 

The result of this analysis, at the end of Sec. 3, is an expression in Laplace-transform 
form for the inflow velocity from the atmosphere to the plug. Since this transform cannot 
be inverted simply a number of special cases and some matters of analytical interest are 
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Figure 1. The incident shock-wave I approaching the perforated plug. The slender tubes are of length L and 
radius a. Pressure ahead of the incident wave and within the tubes prior to time t = 0 isp~; downstream of I the 
pressure is P2 and the incident-flow speed is c28, where c 2 is the sound speed behind 1 and 8 is a small number. 
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described in Sec. 4. The former are principally useful for purposes of comparison with the 
main results, that are finally acquired by simple numerical quadrature; they also make 
clear the role played by waves reflected from the base of the perforations. The results 
discussed in Sec. 5 reveal the rather complicated parts played by hole diameter and length, 
viscosity and openness ratio, and the paper concludes with a comparison between the 
present theory and Scott's [6] observations of a situation for which viscous effects are 
weak. 

2. Transient behaviour in a slender tube 

It  will be assumed that the flow in a long slender tube can be treated as a one-dimensional 
unsteady process and that, with v' as the average flow velocity within the tube, the viscous 
resistance to motion produces a force per unit volume that is equal to v ' / a ,  where 

a = a 2 / 8 # ,  (2.1) 

and tt is the (constant) viscosity coefficient; a is the tube's radius. It will be assumed that 
the flow-velocity v' is small compared with the local sound speed and one can therefore 
linearise the inertia term in the momentum equation which now reads 

, = _ l v , ,  (2.2) * Pc/) t --t~y O/ 

where Pc is a constant mean value of the density and p is the mean pressure in a tube 
cross-section. It will subsequently be seen to be useful to identify density in this way, 
instead of making an immediate identification of Pc with the mean density of the air in the 
atmosphere outside the tubes. A combination of the mass-conservation equation and a 
polytropic relation ( p  proportional to ta n) leads to the equation 

p, = - npcvy , (2.3) 

where Pc is a constant mean value of p that is of course related to Pc- Equations (2.2) and 
(2.3) now constitute two equations for the two unknowns, pressure p and velocity v'. 

Consider the initial-value problem that has v' zero and p equal to the constant value Pl 
(see Fig. 1) everywhere in 0 > y >/ - L; L is the length of a single tube within the plug and 
it will be assumed that at y = - L  the tube is closed, so that v ' ( t ,  - L ) =  0.Denote by an 
overbar the Laplace transform with respect to t of ( p  - P l ) -  P '  and v' as follows; 

( p ' ,  0 ' ) = f 0 ~ ( p  ', v ' ) e - ' t d t .  (2.4) 

It  can then be shown that (2.2), (2.3) and the condition ~'(s, - L ) = 0  (which is the 
transform version of v'(t, - L )  = 0) give rise to the relation 

f ( s )  t a n h ( f ( s ) L ) p ' ,  (2.5) 
o ' -  oc(s + 

* Equation (2.2) is the momentum equation, linearised for small perturbations from a suitable mean condition, 
and with a simple bulk estimate for viscous resistance, in the usual spirit of one-dimensional unsteady gas 
dynamics. 
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where ~'w and ~" are the values of ~' and p '  at y = 0 - ,  and a '  is defined as follows: 

a ' -  1 /&a.  (2.6) 

Also 

cf ( s ) =~ { S( S + O/t)} 1/2, ( 2 . 7 a )  

,, . , ,1 /2  (2.7b) c -- t npc/& ) • 

Equation (2.5) provides a relationship between gas velocity and pressure at the open 
end of a single tube. Note that c, defined in (2.7b), is a polytropic sound speed for the air 
within the tubes. 

Equation (2.5) enables one to calculate v" or p~ as a function of time t once either p"  or 
v(~ is prescribed. The dynamics of gaseous behaviour in the free space above the plug will 
provide another relation between pressure and velocity, whence the problem is formally 
completed once one has made a connection between these pressure and velocity values 
and the ones that appear in (2.5). It will be assumed that pressure is continuous in the 
neighbourhood of the interface y = 0, and in particular that 

p'( t ,  0 - )  =-p" = p ( t ,  0 + ) - p l ,  (2.8) 

where p(t ,  y > 0) is the absolute pressure in y > 0. Only a fraction o(0 ~< o ~< 1) of the 
interface at y = 0 is open so that one must write 

ov'(t ,  0 - )  = or; = v(t ,  0 +) (2.9) 

since mass must not accumulate at the interface. (This relation assumes continuity of 
density across y = 0, with implications for the value of Pc; the matter will be raised and 
discussed again below.) Therefore (2.5) can be translated into a relation between p and v 
as y approaches zero from above; i.e. the boundary condition for the external gas flow is 
n o w  

Uw = - -o f ( s )pZI (  S + O/t) - 1  tanh( f ( s ) L  )(pw - p , ) .  (2.10) 

It  will be useful to write (2.10) in the short form 

Uw = - - a ( s ) ( p w - P l ) ,  (2.11) 

where G(s) is defined to be 

G(s)  - of(s)p~-a(s + a') -1 t a n h ( f ( s ) L  ), 

o s ' / 2 t a n h { s ' / 2 ( & s + a - ' ) ' / 2 L ( n p ~ )  - ' /2}  

1/2 ('Pc) (PcS-'b@-I) 1/2 
(2.12) 
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3. The formal solution of the problem 

The behaviour of pressures and velocities in an unsteady one-dimensional flow of small 
velocity-amplitude is well known (e.g. Whitham [7], §9.1) and need not be re-calculated 
here. The necessary results of the analysis are listed below. First, the local pressure and 
velocity can be written as follows; 

P - P 2  + 3P (1), v ~ -c23 + 3v (u, (3.1) 

where the parameter 3 is defined in Fig. 1. Multiplication of 3 by c 2, the sound speed in 
the flow behind the incident shock wave, gives the incident flow velocity towards y = 0. 
Pressure and velocity perturbations are related as follows 

p(1)  = 02C20(1). (3.2) 

Finally the solution for v m is given in the parametric form 

v m = v(~l)(fl), (3.3) 

c2t - y = f l  - (½('y + 1 ) ( v~ l ) (  f l  ) / c 2 )  - 1}yS,  (3.4) 

where V~w 1) is the value of v m at y = 0 + and y is the (constant) ratio of specific heats. At 
this stage V~w ~) is a function to be found for f l  > 0; since there is no disturbance prior to 
time t = 0 it is already known that 

v~')(/~ < O) = O. (3.5) 

Evaluation of V~w 1) proceeds as follows. Using (3.1) and (3.2) as well as the Laplace 
transform with respect to t in (2.11) shows that 

- c 2 8 s  -1 + 8~(1 )=  - G ( s ) ( ( p 2 - P l ) S  -1 + ~p2c2~! ) } .  

Noting that the incident shock is weak, by hypothesis, so that 

p 2  - p ,  = o2c a, (3.6) 

it follows that 

1 + 02C2 G (S )  " 

The solution is now formally complete because (3.7) can be inverted to give V~wl)(t) for 
t > 0 and hence, of course, V~wl)(fl > 0). Inversion of the Laplace transform is described in 
the next section. Meanwhile it should be noted that when & is zero the function G(s) in 
(2.12) reduces to 

z . x l / 2  1/2 
Go(s) o~sa/npc) = tanh( (s /npca  ) L } .  

A little manipulation soon shows that (3.7) is formally identical with (4.4) in Clarke's [3] 
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paper; in other words when the inertia term is ignored, (2.2) reduces to Darcy's law and 
the earlier results are therefore recovered. 

The behaviour of v(~ 1) as t ~ 0 + can be ascertained by examining (3.7) in the limit as 
Isl --, ~ .  Equation (2.12) shows that 

6 (  s ---> oo)  ---> o / (  npcpc)  ' / 2  = o / p c c  , 

where c is defined in (2.7b). Therefore (3.7) implies that 

where r, defined by 

r --  o ( P 2 c 2 / P c C ) ,  (3.9) 

is the open-ness factor a modified by the acoustic-impedance ratio of the air outside and 
inside the slender tubes. If Pc ~ 0, r ~ o0 and v(~l)(0 + ) ~  - c2 ,  which is precisely the 
result obtained from the inertialess model (Clarke [3]). Having used the freedom to choose 
Pc arbitrarily as a device to check the present analysis and relate it to earlier work, it 
should be noted that, in view of the postulated weakness of the incident shock, the 
physical reality is that Pc will be essentially the same as the mean value of density 
throughout the field, namely P2- Thus a physically acceptable value for r is 

r = o ( c 2 / c ) ,  (3.10a) 

or if, as is highly likely, c is synonymous with c z,  then 

r = o. (3.10b) 

The matter will be raised again in Secs. 4 and 5 after some more detailed results have been 
obtained. 

4. The inflow function 

The solution of the problem is only complete when (3.7) has been inverted or, in other 
words, when the integral 

lv(wa)(t)=-V = 1 f8 1{ 1-p2c2G(s) }etsds 
C 2 ~ r S 1 - + p 2 c 2 G ( s )  

(4.1) 

has been evaluated. V is defined here for the sake of brevity later on; B r  is the Bromwich 
inversion contour, that lies parallel to the Ira(s) axis and to the right of all singularities of 
the integrand in (4.1). With the definition of r in (3.9), (4.1) can be re-written with the aid 
of (2.12) in the following form 

1 1 (z+l)l/2-rzl/2tanh(aL[z(z+l)]'/2)}eC2t~Zdz 
v= ~ fsrZ (Z + 1) 1/2 4- rz  1/2 tanh(~L[z(z + 1)] 1/2) (4.2) 
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where 

= 1 / a 0 2 c : ,  (4.3) 

The  Laplace  t rans form in (4.2) is not  listed in any of the available tables of  Laplace  
t ransforms,  and so the integral must  be  evaluated here. I t  will be  helpful  to examine  one 
or two special cases to start  with. 

(i) The case L = oo. 

Suppose  that  L is infinite, then the integrand in (4.2) simplifies somewhat ,  and one can 
write V = V~, where 

1 1{ ( z+ l ) ' / 2 - z l / 2 r }  
V~ = 2~ri fB,7 (z + 1) 1/2 + el/2r e¢2tnZdz' (4.4) 

N o w  suppose  that  r = 1 and re-write (4.4) as follows, where V~I is the value of V~ when 
r = 1; then 

V~l=l-2e-C2tn/212~ri ~ r  { ( w + ½ ) l / 2 1 }  - -  ½)1/2 

This  last integral  can be found f rom inverse Laplace  t rans form n u m b e r  (2.4) in §5.3 of  
E r d d y i  et al. [4], so that  

V~I = 1 - exp( - c2t~/2)[ I o ( c2t~/2) + 11 ( c2tFt/2)] , (4.5) 

where  ln, n = 0, 1, is the modif ied Bessel funct ion of the first k ind of order  n. I t  is 
interesting to note  the connect ion between ~ here and a pa rame te r  ~-2 that  appears  in a 
related pape r  on porous -media  behaviour  (Clarke [2], par t icular ly  Append ix  A). This 
relat ionship is 

= r2,'l 2 (4.6) 

and it will p rove  helpful  to present  some subsequent  results here in terms of ~2. 
When  r 4= 1 one must  resort  to numerical  evaluat ion of (4.4). No te  that  the in tegrand in 

(4.4) has b ranch  points  at  z = 0 and - 1, and no poles. I t  is therefore possible  to de fo rm 
Br into a small  closed curve surrounding the two b ranch  points  and thus to show that  

4 r  f l  ( 1  - -  w2)l/2e -c2tr2"i2w: 
d w  (4.7) 

The  relat ion (4.6) is incorpora ted  in (4.7) because it is par t icular ly  useful to i l lustrate V~ 
as a funct ion of c2t,42 for given values of  r, ra ther  than  as a funct ion of t~. I t  is instructive 
to include the curve for o~ 1) when r = oo, and flow in the tubes is inertia-less, in such 
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comparisons .  Revert ing to (4.4), and noting (4.6), change the variable of integrat ion f rom z 
to s/r2; t hen  

1 f /$1/2(S1/2 + ( 1  + s/r2)1/2)}-12 exp(c2t-~:s)ds. 
Vo~ = 1 - 2 ~ r i  JBr [ \ 

When  r ~ ~ the integrand approaches  2 { s 1/2 (S 1/2 jr_ 1) } - 1 exp(c2 t~2S ) and V~ takes the 
value V ~ ,  where 

Vo~o~ = 1 - 2 exp (cz tA2)e r f c ( . 4 ( c2 t ) ' / 2 ) .  (4.8) 

This result is strictly comparab le  with one previously found by  the writer [3] for the 
inertia-less version of (2.2); i.e. Pc ~ 0, and note  (3.9). Expression (4.8) is plot ted in Fig. 2 
as a full line for compar i son  with the Simpson 's- rule  evaluat ions of  (4.7) for r = 0.4, ] ,  0.8, 
1&2.  It  should be  remarked  that  the numerical  est imates for the integral when r = 1 agree 
very well with a direct evaluat ion of V~I f rom (4.5) using Table  9.8, page 416, f rom 
Abramowi t z  and Stegun [1]. Because it can be measured  exper imental ly  Vw/C28 is plot ted 
in Fig. 2. F r o m  (3.1) and (4.1) it can be seen that  this quant i ty  is s imply ( V -  1). No te  that  
c 2 tA 2 is the natural  dimensionless group for the t ime-variable  t in the limiting (inertia-less) 
case, r -~ oo. Plotting results for finite values of  r against  this same variable, as in Fig. 2, 
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Figure 2. The influence of inertia on inflow velocity v., versus time t at early times after the impact of I on the 
interface a t y  = 0. The full line ( r  = oo) illustrates behaviour for the case of no inertia; the number r is related to 
the "openness-ratio" of the interface (see Sec. 3 for details). 
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enables one to appreciate the role of the inertia of the air within the tubes in a very direct 
way. For example, one can see from Fig. 2 that the major effect occurs for early times 
after shock reflection and is such as to reduce the rates of inflow. It can also be seen that 
at later times inertia has the effect of sustaining the inflow by a small, but nonetheless 
noticeable, amount. 

O0 The case L finite 

When L is finite the simplification afforded by the replacement of tanh(~L (z(z + 1)) 1/2 ) 
by unity in (4.2) is no longer available. Furthermore there are no special values of r that 
lead to a reduction in the task of evaluating (4.2), save for the limiting case r = oo. One 
must remember that r = ~ only has physical relevance as a limiting quantity in the 
particular circumstance that allows & to shrink to a limitingly small value; these 
conditions have already been discussed in Sec. 3 so that we already know that the earlier 
"inertia-less" model is recovered under these conditions. It should be noted that the 
finite-L situations encountered in this earlier "inertialess" model of behaviour could also 
only be evaluated by numerical means (Clarke [3]). Evidently one must face up to the task 
of a detailed evaluation of the features of the integral in (4.2), with parameter r in the 
range 0 < r < ~ .  The issue is quite a complicated one and it is advantageous to limit 
discussion to the finite range 0 < r ~< 1, which is the practical one encountered in 
shock-tube experiments. When r is zero V is equal to unity and (3.1) and (4.1) show that v w 
is zero, as it should be for a completely closed surface at y = 0 - .  

There is some small advantage to be gained from re-writing (4.2) as 

1 2 exp(c2t~z) (4.9) 
V - 1  2 ~ i f B ~ z + r _ l ( z ( z + l ) ) l / 2 c o t h ( ~ L ( z ( z + l ) ) l : ) d z  , 

and some effort will have to be devoted to an understanding of the character of the 
integrand in this equation. Writing z = ~ + i*/(~, 71 real) the main features of the integrand 
can be summarised here as follows: The integrand has no branch points, and no 
singularities of any kind in ~ > 0. There are no singularities in ~ >/ - ½, ]*/] > 0, but poles 
may occur on 7/= 0, ~ < 0. If ~L is large enough for any given r, poles may occur in 

~-< ~ < 0, 77 = 0. A denumerable infinity of complex-conjugate poles exists in the 
domain ~ < - ½ .  Their distance apart in the */-direction is very roughtly ~r/~L. For 
example when r=-~  and K L =  2 (or ,42L=4.5)  the first pair of poles lies at 
( -0 .8957,  +2.1694) in the z-plane and the next pair at about the same ~ value and 
*/= ___ 3.82. 

Evidently the contour Br can be closed on its left-hand side, and (1 - V) therefore 
written as the sum of the residues at the poles of the integrand of (4.9). Since it is a tedious 
matter to locate a sufficient number of conjugate poles of the type that have just been 
described, and since there is no ready way to check upon the rate of convergence of the 
associated infinite sum, this procedure has not been attempted here. However the 
investigation of the character of (4.9) is not in vain since it has exposed the existence of 
conjugate poles in ~ < 0 and, in addition, poles on 7/= 0 in - ½ < ~ < 0, the latter for 
sufficiently large values of ~L. In such circumstances it is possible to use (4.9) to obtain an 
estimate of the way in which ( V -  1) ~ 0 as Czt~ increases, since the contribution from a 
pole in - ½  < ~ < 0 will predominate over the contributions from the sequence of 
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conjugate poles. The general analysis demonstrates that v~ will always approach zero as t 
increases without bound, although to find the way in which it does so will be quite 
complicated if, as is possible, ~L is too small to admit the presence of a pole in 

½ < ~ <  0 when ~/= 0. 
It is useful to revert to (4.2) and to reorganise the terms in ( } as follows: 

( ) = [ Q ( z ) + e - Z t ( z ) ] [ 1  +Q(z )e -2 I<z ) ]  - ' ,  (4.10) 

where 

Q ( z )  = ( ( z  + 1) 1 / 2 -  r z l / 2 ) / ( ( z  + 1) 1/2 + rz l /2) ,  

I ( z )  =  L(z(z + 1)) '/2 

(4.11a) 

(4.11b) 

Expanding the final bracket term in (4.10), as is permissible when Re z = ~ is large and 
positive for example, (4.2) can be written as 

V =  - ~ i f B  r Q ( z ) + [ 1 - Q Z ( z ) ]  e x p ( - 2 I ( z ) )  

+ E ( - 1 ) " - ' Q " - ' ( z ) [ 1 -  QZ(z)]  e x p ( - 2 n I ( z ) )  eC2t~Zdz. (4.12) 
n = 2  

The index - 2 I ( z )  behaves like 

- 2~Lz  - ~tL + ( ~ tL/8z  ) + .. .  

as [z[ ~ o¢, so that (4.12) gives rise to an unending sequence of terms that vanish when 
c2t~ < 2 n ~ L ,  n = 1, 2, 3 . . . . .  except for the first term which, from the definition of Q ( z )  
in (4.11a), can be seen to be exactly V~, defined in (4.4). 

Thus, in the interval 0 < Czt~ < 2ilL, Vbehaves just as if the length of the slender tubes 
is unbounded. At c2 t= 2 L  their finite depth becomes apparent in the shape of a 
disturbance that has clearly reflected from the closed lower surface at y = - L ,  and this is 
followed by the unending sequence of further reflections at c2t = 2nL,  n = 2, 3 . . . . .  

The amplitude of the jump that occurs in V at c2t = 2L is readily seen to be equal to 

4r(1 + r )  -z  e x p ( - r 2 A 2 L ) ,  (4.13) 

with subsequent jumps of amplitude 

( - 1 ) " - 1 4 r ( 1  + r ) -Z[ (1  - r ) / ( 1  + r)]  " - '  exp( -n rZAZL) ,  n = 2, 3 . . . . .  (4.14) 

Since 0 < r ~< 1 it is clear that the amplitude of each jump is less than unity, even in the 
physically unlikely situation for which .42L ~ 0. However it is interesting to observe how 
slowly 4r(1 + r)  -2 diminishes with diminishing value of r; when r = 1 it is unity, when 
r = ~ it is 0.96 and when r = ~ it is still as large as 0.75. 
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It can be seen that the set of curves of 13w/C2~ v e r s u s  c2th 2 presented in Fig. 2, for 
L = o¢ and a variety of values of r, are now valid for any value of L for CEt up to but not 
exceeding 2L. At this value of c2t a jump in Vw/C26 of magnitude (4.13) occurs, as 
illustrated in Figs. 3 and 4 for the two cases r = ] & 1, and four values of .,12L (or ~L, 
= r2.42L). The value unity for r is strictly not achievable when (3.10b) holds on purely 
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dotted curves are explained in Sec. 5, paragraph five. 
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Figure 4. Inflow velocity v w versus time t for four values of tube-length L (as in Fig. 3) when r is equal to 
two-thirds. 



346 

practical grounds for holes of circular cross-section; one might visualise a set of square 
holes separated by walls of vanishing thickness but again this is hardly practical, and one 
would have to reinterpret the meaning of a too. Reverting to (3.10a) it is logical to assert 
that Pc and P2 should be approximately the same, but c could be significantly smaller than 
c 2 if the walls of the slender tubes are distensible under the action of the over-pressures 
within them, as can be seen from §2.1 of Lighthill's [5] book, especially equation (10) 
there. At all events r = 1 is a useful limiting value to exploit. 

5. Discussion 

Consider Fig. 3, which depicts v w v e r s u s  c2t.~ 2 for r = 1, at least for 0 < c2t < 4L. Note 
that the jumps in the vw curve that occur at c2t = 2L are of rapidly diminishing amplitude 
as L increases, as is evident from a glance at (4.13). 

When incident shock wave I initiates motion in the thin tubes the signal is transmitted 
towards the closed end of these tubes at y = - L  as a jump in pressure, flow velocity, etc., 
that travels at the sound speed c 2. (To see this one needs to revert to the equations in 
Section 2 so as to derive a relation between the average velocity within a tube and the 
pressure at its open end; the result just quoted then follows and shows that, in general, 
discontinuous wave-fronts propagate back and forth between y = 0 and - L). When the 
surface is "fully-open", and r = 1, each tube initially swallows the whole incident shock; 
this pressure-jump travels to y = - L ,  where it is reflected and propagated back towards 
y = 0, suffering viscous attenuation throughout the process. A jump of pressure or velocity 
v w emerges at c2t = 2L which is therefore much weaker than the initial input value from I. 
This can be clearly seen on Fig. 3, where the magni tude  of the input-value of Vw/C28 is one 
and the magnitude of the largest jump (at c2tA 2 = 4 for .~2L = 2) is about 0.14. As L 
increases this latter quantity diminishes very significantly and the effect is, for all practical 
purposes, more like a simple change in the slope of (v.~/c28) v e r s u s  (c2tA 2) for A 2 L  >__ 6. 
Of course r cannot be as large as unity in a practical situation, but the limit is useful as a 
comparator, as discussed at the end of Sec. 4. 

When the surface is partly closed, as it is when r = 2, the situation is quali tat ively the 
same, but noticeably different quantitatively speaking, as can be seen in Fig. 4. Since I 
reflects directly from y = 0, in part at least, for all r < 1 the pressure-signal that drives flow 
into the porous material is initially stronger than is the case when r = 1; thus, as can be 
seen from Fig. 4, the emergent jumps of velocity (or pressure) when r < 1 are larger than 
the jumps that appear when r = 1 for the same length of tube. 

Equation (4.14) shows that the sign of consecutive reflections alternates, as indeed one 
would suspect that it should when the inertia of the airflow in the tubes is taken into 
account, along with its capacity to cause the flow to "overshoot" its equilibrium configura- 
tion. The character of the integrand in (4.9) allows one to deduce that this equilibrium 
state is the one for which v w is zero, and both external and internal (to the tubes) pressures 
are finally equalised. 

The curves in Fig. 3 and 4 that follow after the jumps at c2t = 2L are calculated 
numerically from the second term in the integral in (4.12). The dotted extensions beyond 
c2t = 4L are continuations of this same expression beyond the appearance of the first 
reflected wave. The only exceptions occur for the two c a s e s  .xlZL = 2&4 in Fig. 4 where the 
jump, calculated from (4.14), has been subtracted from the sum of the first two terms of 
(4.12). It is evident from the case .~ZL = 4 that the jump is of no real practical significance 
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for any higher L values and, accordingly, we regard the situations depicted in Figs. 3 and 
4 as adequate approximate summaries of the true physical situation. 

It  can be seen from (3.1) and (3.2) that a positive value of v °) or, equivalently, a value 
of Vw/C2~ greater than - 1  implies a positive increment of pressure above the post-inci- 
dent-shock value of pressure, namely P2- Thus Figs. 3 and 4 can also be interpreted as a 
history of the compression waves emanating from the interface at y = 0. Equations (3.3) 
and (3.4) summarise the character of the weakly non-linear field that will exist in the gas 
above y = 0 for all times greater than zero (equivalently, fl > 0) except for the insertion of 
shock-waves which may be required to prevent the occurrence of multiple values of v °~, 
p~l) etc. For example, the sudden jumps at t = 0 and 4A2/c2 when r = 32 (Fig. 4) demand 
the appearance of shocks immediately, at y = 0, at these times. For intermediate and 
subsequent times the slow compressions that are evident throughout Figs. 3 and 4 will lead 
to a steady strengthening of the shocks at their head. There is no obstacle to prevent one 
from fitting shocks into the field in y > 0, by exploiting the equal-areas rule for example 
(Whitham [7], §2.8). It is not done here because the purely qualitative character of the 
outcome is quite evident from Figs. 3 and 4, and this is sufficient for present purposes. 

The present analysis has revealed as much as one needs to know at this stage; the 
influence of inertia, viscosity, tube-length, etc. can now be appreciated, and the relevant 
parameter-groups have been exposed. In conclusion it is interesting to observe that the 
positive values of Ow/C2~ that are evident on Fig. 4 for C2tA 2 > 4, mean that the strength of 
the reflected shock wave from the perforated end-plug will exceed the strength of the 
shock reflected from a solid wall, at some time after the initiation of reflection, and before 
finally subsiding to the same solid-wall value. The only satisfactory way to ensure that an 
undesirable overshoot of this kind does not occur is to make the tubes long enough, as can 
be seen from Fig. 4, for example. 

Scott's [6] observation of the flow in the reflected-shock domain for a configuration like 
the one sketched in Fig. 1 make an interesting post-script to the foregoing theory. As 
described in the Introduction, his main objective was the generation and observation of 
the behaviour of fully-dispersed shock waves in carbon dioxide. As part  of the process of 
understanding the interaction between the flow generated behind the incident wave I and 
the perforated plug Scott made measurements with air as the working gas and, to the 
extent that relaxation processes are essentially absent in this case, these observations are 
comparable with the present theory. Copies of two pressure-time histories are exhibited 
here in Figs. 5a and b. They have been annotated to show the values of Pl,  P2 and P3, 
where the first two pressures are defined in Fig. 1, and P3 is the value of pressure after 
reflection of I from a solid wall. The measurements were made at a distance of 36.5 m m  
above the a i r /perfora ted-plug interface, with an incident-shock Mach number  of 1.66 and 
1.68 in the two cases. The value of the perturbat ion-number 8, defined in Fig. 1, is about 
0.74 in these circumstances, so that comparisons between Scott's observation of a strong 
disturbance field and the present theory's account of weak disturbance behaviour can only 
be of a qualitative character. The plug used in the experiments contained sixty-four holes 
of diameter 2.38 m m  and length either 88.9 or 28.1 m m  (Figs. 5a and b, respectively). 
With a square tube cross-section of side 45 m m  this gives a value for o of 0.141. With such 
a large tube diameter the estimated value of ~ (which, from (2.1) and (4.3), is given by 
8~,2/a2c2 in the present theory) is small, roughly 0.005 cm -1. The use of (2.1) to estimate 
the viscous resistance to flow in the slender tubes implies that this flow is laminar; Scott's 
observations suggest that this may not be so, and that flow in the tubes may be turbulent 
in character. Even if one adopts the rather crude expedient of simply increasing the value 



348 

of the viscosity in a (see (2.1)) to account  for this fact it is not  reasonable,  physically, to 
imagine that 8 will be increased by more than a factor of ten, so that 8 appears to be 
essentially small for Scott 's experiments.  It may be rather more reasonable  to assume that 
the realities of the experimental  set-up can be represented by a type of "discharge-coeffi- 
cient" reduct ion in  the factor o (or r),  since this certainly results in the lower mass-flux 
rates into and  out of the plug that in tu i t ion  suggests may prevail in the case of the strong 
dis turbances  produced in the experiments.  

When  8 or, equivalently,  r2,42 (see (4.6)) is small the changes that take place in the 
inflow factor V with changing time are also small for t ime intervals between the j umps  
whose magni tudes  are given in (4.13) and  (4.14). This can be seen by consul t ing (4.12) for 
example and  remarking that c2t~ remains  reasonably small for 0 < c2tot < (say) 4~L,  

Figure 5. Pressure versus time measured in the reflected wave field by E.M. Scott [6]; reproduced from his 
Figures 3.4.7, C&D. (a) Incident shock Mach number = 1.66, Pl = 200 torr, L = 88.9 nun. (b) Incident shock 
Mach number = 1.68, Pl = 200 torr, L = 28.1 ram. The value of P3 - Pl is calculated from the measured P2 - Pl 
value and the formula for the pressure-ratio of a shock reflected from a solid wall (e.g. Equation (70.05), page 
153, in "'Supersonic flow and shock waves", R. Courant & K.O. Friedrichs, Interscience, New York, 1948); this 
formula is known to agree very well with observations. 
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Figure 6. Pressure variations at the air/perforated-plug interface after reflection of the incident shock, according 
= Ot to the present theory with r 0.1 and - = 0. Sh and exp denote shocks and expansion-waves in the reflected 

wave field. 

since 4 ~ L  is i tself  small .  The  effect of  the small  changes  in the magn i tude  of  the 
exponen t i a l  fac tor  e x p ( c 2 t ~ z )  on the value of  the integrals  (see (4.7) for example)  is c lear ly  
no t  large under  these condi t ions .  

Thus,  in rough terms,  the present  theory  pred ic t s  that  when r and  ~ are small  the inf low 
factor  V will behave  as a sequence of  steps, as i l lus t ra ted  in Fig. 6 for  r = 0.1 and  ~ = 0. In  
view of  (3.2) and  the def in i t ion  of  V in (4.1) it  is c lear  tha t  the o rd ina t e  in Fig.  6 can be  
labe l led  as a pressure,  eva lua ted  at  the interface;  the value  zero on the f igure co r re sponds  
with  P2 on Fig. 1 and  uni ty  indica tes  the a sympto t i c  value  of pressure  beh ind  the ref lected 
waves, which we have a l r eady  seen (in Sec. 4) mus t  co r r e spond  with  the no- inf low (v w = 0) 

sol id-wal l  value P3- 
R e m e m b e r i n g  that  the  cent red  expans ion  wave, labe l led  Exp. on  Fig. 6, will have 

sp read  out  by  the t ime it reaches the measur ing  s ta t ion  in Scot t ' s  exper iments ,  the 
compa r i son  be tween  Figs.  5 and  6 reveals  as sa t i s fac tory  a degree  of  ag reement  be tween  
theory  and  observa t ion  as one is ent i t led  to expect  in the c i rcumstances .  
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